Applications of the Matrix exponential

Discussion in 'Physics & Math' started by rpenner, Feb 27, 2016.

  1. rpenner Fully Wired Valued Senior Member

    Messages:
    4,833
    Definition
    \(\textrm{exp}(M) = I + \sum_{k=1}^{\infty} \frac{1}{k!} M^k\) ; M is a square matrix.


    Case I

    \(M = \begin{pmatrix} d_1 & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & d_2 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & d_3 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & d_4 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & d_ 5 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \dots & d_n \end{pmatrix} \\ \textrm{exp}(M) = \begin{pmatrix} e^{d_1} & 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & e^{d_2} & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & e^{d_3} & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 &e^{ d_4} & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & e^{d_ 5} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \dots & e^{d_n} \end{pmatrix} \)

    Corollary:
    M = k I
    exp(M) = exp(k) I

    Case II
    \(M = S J S^{-1} \\ \textrm{exp}(M) = S \textrm{exp}(J) S^{-1}\)

    Case III
    M = (A + B)
    exp(M) = exp(A) exp(B) if A B = B A

    Case IV
    \(M = a \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ \textrm{exp}(M) = \begin{pmatrix} \cosh(a) & \sinh(a) \\ \sinh(a) & \cosh(a) \end{pmatrix}\)

    Case IV
    \(M = a \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \\ \textrm{exp}(M) = \begin{pmatrix} \cos(a) & - \sin(a) \\ \sin(a) & \cos(a) \end{pmatrix}\)

    Case V
    \(M = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \\ \textrm{exp}(M) = \begin{pmatrix} \cosh \left( \sqrt{a} \sqrt{b} \right) & \frac{\sqrt{a}}{\sqrt{b}} \sinh \left( \sqrt{a} \sqrt{b} \right) \\ \frac{\sqrt{b}}{\sqrt{a}} \sinh \left( \sqrt{a} \sqrt{b} \right) & \cosh \left( \sqrt{a} \sqrt{b} \right) \end{pmatrix} ; \quad a \neq 0 \neq b \)

    Case VI
    \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ \textrm{exp}(M) = \begin{pmatrix} e^a & b e^{\frac{a+d}{2}} \frac{ 2 \sinh \frac{a - d}{2} }{ a-d} \\ c e^{\frac{a+d}{2}} \frac{ 2 \sinh \frac{a - d}{2} }{ a-d} & e^ b \end{pmatrix} = \begin{pmatrix} e^a & b \frac{ e^a - e^d }{ a-d} \\ c \frac{ e^a - e^d }{ a-d} & e^ b \end{pmatrix} ; \quad b c = 0, a\neq d \)

    Case VII
    \(M = \begin{pmatrix} a & b \\ c & a \end{pmatrix} \\ \textrm{exp}(M) = \begin{pmatrix} e^a & b e^a \\ c e^a & e^a \end{pmatrix} ; \quad b c = 0 \)


    Case VIII
    \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ \textrm{exp}(M) = \frac{e^{\frac{a+d}{2}}}{\sqrt{(a-d)^2+4bc}} \begin{pmatrix} \sqrt{(a-d)^2+4bc} \cosh \frac{\sqrt{(a-d)^2+4bc}}{2} + (a-d) \sinh \frac{\sqrt{(a-d)^2+4bc}}{2} & 2 b \sinh \frac{\sqrt{(a-d)^2+4bc}}{2} \\ 2 c \sinh \frac{\sqrt{(a-d)^2+4bc}}{2} & \sqrt{(a-d)^2+4bc} \cosh \frac{\sqrt{(a-d)^2+4bc}}{2} + (d-a) \sinh \frac{\sqrt{(a-d)^2+4bc}}{2} \end{pmatrix} \)
     
  2. Google AdSense Guest Advertisement



    to hide all adverts.
  3. Confused2 Registered Senior Member

    Messages:
    609
    A happy chance. I have found 'learning matrices' to be deadly boring and have succumbed to motivational failure on several occasions. Spice up matrices with exp and it becomes irresistible - many thanks (not for the first time).
    -C2.
     
    danshawen likes this.
  4. Google AdSense Guest Advertisement



    to hide all adverts.
  5. Dr_Toad It's green! Valued Senior Member

    Messages:
    2,527
    Me, too. I got far enough into it to get a nice headache. I'll try more tomorrow, God willin' and the creek don't rise.

    Thank you!

    Please Register or Log in to view the hidden image!

     
    danshawen likes this.
  6. Google AdSense Guest Advertisement



    to hide all adverts.
  7. arfa brane call me arf Valued Senior Member

    Messages:
    7,832
    Whereas the Taylor expansion of exp(X) is \( 1 + \sum_{k=1}^{\infty} \frac{1}{k!} X^k\), but not for any X?
    Since if X is a matrix it must be a square matrix?
     
    danshawen likes this.
  8. rpenner Fully Wired Valued Senior Member

    Messages:
    4,833
    If X is a real or complex number, it works for any X.
    The matrix product AB is only defined if A is a \(n \times m\) matrix and B is a \(m \times p \) matrix because each element of the product is the dot product of a row of A with a column of B. \( \left( AB \right)_{ij} = \sum_{k=1}^{m} A_{ik} \times B_{kj}\). As a result BA might not be possible even if AB is and \(M^2\) is only defined for square matrixes.
     
    danshawen likes this.
  9. absolute-space Registered Member

    Messages:
    280
    ah, now I know who you are, sorry about the earlier comments,
     
    danshawen likes this.
  10. arfa brane call me arf Valued Senior Member

    Messages:
    7,832
    If we take your cases IV and V, i.e. let \( A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},\;\; B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \), then AB = -BA.

    What happens then [ed: well, I can see that A + B will square to zero]? Or suppose \( B = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \), then \( A + B = \begin{pmatrix} 0 & 1 - i \\ 1 + i & 0 \end{pmatrix} \).
     
    Last edited: Feb 28, 2016
    danshawen likes this.
  11. rpenner Fully Wired Valued Senior Member

    Messages:
    4,833
    \(M=\begin{pmatrix} 0 & 1 - i \\ 1 + i & 0 \end{pmatrix} = \begin{pmatrix} - \frac{1 -i}{2} & \frac{1 -i}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} - \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} - \frac{1 +i}{2} & \frac{1}{\sqrt{2}} \\ \frac{1 +i}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} \)

    So we have:
    \(M^{2n} = 2^{n} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2^{n} I \\ M^{2n+1} = 2^{n} \begin{pmatrix} 0 & 1 - i \\ 1 + i & 0 \end{pmatrix} = 2^{n} M\)

    So \(\textrm{exp}(M) = \sum_{k=0}^{\infty} \left( \frac{ 2^{k} }{ (2k)! } I +\frac{ 2^{k} }{ (2k+1)! } M \right) = \left( \cosh \sqrt{2} \right) I + \left( \frac{1}{\sqrt{2}} \sinh \sqrt{2} \right) M \\ \quad \quad = \begin{pmatrix} \cosh \sqrt{2} & \frac{1 - i}{\sqrt{2}} \sinh \sqrt{2} \\ \frac{1 + i}{\sqrt{2}} \sinh \sqrt{2} & \cosh \sqrt{2} \end{pmatrix}\)

    Alternately:
    \(\textrm{exp}(M) = \begin{pmatrix} - \frac{1 -i}{2} & \frac{1 -i}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} e^{- \sqrt{2}} & 0 \\ 0 & e^{\sqrt{2}} \end{pmatrix} \begin{pmatrix} - \frac{1 +i}{2} & \frac{1}{\sqrt{2}} \\ \frac{1 +i}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \cosh \sqrt{2} & \frac{1 - i}{\sqrt{2}} \sinh \sqrt{2} \\ \frac{1 + i}{\sqrt{2}} \sinh \sqrt{2} & \cosh \sqrt{2} \end{pmatrix}\)
     
    danshawen likes this.
  12. arfa brane call me arf Valued Senior Member

    Messages:
    7,832
    What about the expansion of \( e^Ae^Be^{-A}e^{-B} \)? Do A and B need to be Hermitian?
     
    danshawen likes this.
  13. rpenner Fully Wired Valued Senior Member

    Messages:
    4,833
    No, they just need to be square matrices of the same size.

    However if A and B don't commute, the result is not I.

    To second order,
    (I+A+A^2/2)(I+B+B^2/2)(I-A+A^2/2)(I-B+B^2/2)
    = (I+A+B+AB+A^2/2+B^2/2+...) (I-A-B+AB+A^2/2+B^2/2+...)
    = I+AB-BA+...

    But if A is Hermitian, so is exp(A). And if A and B are Hermitian and commute, then AB is Hermitian.
     
    Last edited: Feb 28, 2016
    danshawen likes this.
  14. arfa brane call me arf Valued Senior Member

    Messages:
    7,832
    Ok. I have a formula that expressly uses two of the Pauli matrices: \( \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},\;\; \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \).

    But you include an angle, \( \theta \), as: \( e^{-i\theta \sigma_y}e^{-i\theta \sigma_x}e^{i\theta \sigma_y}e^{i\theta \sigma_x}\). Then if \( \theta \) is small, higher order terms are small, so you get good approximation to order 3 in the expansion.

    The "trick" is that rotations about x and y (as axes in Euclidean 3-space), also generate rotations about the z axis, thanks to the equality: \( \sigma_x \sigma_y = i \sigma_z \).
     
    danshawen likes this.
  15. rpenner Fully Wired Valued Senior Member

    Messages:
    4,833
    As from post #10, we have \(\lim \limits_{\theta \to 0} e^{-i\theta \sigma_y}e^{-i\theta \sigma_x}e^{i\theta \sigma_y}e^{i\theta \sigma_x} = e^{\theta^2 ( \sigma_x \sigma_y - \sigma_y \sigma_x ) } = e^{\theta^2 [ \sigma_x , \sigma_y ] } = e^{2 i \theta^2 \sigma_z} \)

    Analytically, we have for \( \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\),

    \(e^{i \theta \sigma_x} = (\cos \theta) I + i (\sin \theta) \sigma_x \\ e^{i \theta \sigma_y} = (\cos \theta) I + i (\sin \theta) \sigma_y \\ e^{i \theta \sigma_z} = (\cos \theta) I + i (\sin \theta) \sigma_z \\ e^{-i\theta \sigma_y}e^{-i\theta \sigma_x}e^{i\theta \sigma_y}e^{i\theta \sigma_x} = ( \cos 2\theta + \frac{1}{2} \sin^2 2 \theta ) I + \frac{i}{2} (1 - \cos 2 \theta) (\sin 2 \theta) ( \sigma_x - \sigma_y) + \frac{i}{2} (\sin^2 2\theta) \sigma_z\)

    \(\lim \limits_{\theta \to 0} e^{-i\theta \sigma_y}e^{-i\theta \sigma_x}e^{i\theta \sigma_y}e^{i\theta \sigma_x} \\ \quad = \left(1-2\theta^4+\frac{4}{3} \theta^6 \right) I + i \left( 2 \theta^3 - 2 \theta^5 + \frac{4}{5} \theta^7 \right) ( \sigma_x - \sigma_y) + i \left ( 2 \theta^2- \frac{8}{3} \theta^4 + \frac{64}{45} \theta^6 \right) \sigma_z \)

    \(\begin{array}{c|ccc} \quad & \times \sigma_x & \times \sigma_y & \times \sigma_z \\ \hline \\ \sigma_x & I & i \sigma_z & - i \sigma_y \\ \sigma_y & -i \sigma_z & I & i \sigma_x \\ \sigma_z & i \sigma_y & -i \sigma_x & I \end{array}\)

    //
    \(e^{i \theta_x \sigma_x + i \theta_y \sigma_y + i \theta_z \sigma_z} = \left( \cos \sqrt{\theta_x^2 + \theta_y^2 + \theta_z^2} \right) I + i \frac{\theta_x}{\sqrt{\theta_x^2 + \theta_y^2 + \theta_z^2}} \left( \sin \sqrt{\theta_x^2 + \theta_y^2 + \theta_z^2} \right) \sigma_z + i \frac{\theta_y}{\sqrt{\theta_x^2 + \theta_y^2 + \theta_z^2}} \left( \sin \sqrt{\theta_x^2 + \theta_y^2 + \theta_z^2} \right) \sigma_y + i \frac{\theta_z}{\sqrt{\theta_x^2 + \theta_y^2 + \theta_z^2}} \left( \sin \sqrt{\theta_x^2 + \theta_y^2 + \theta_z^2} \right) \sigma_z\)
     
    Last edited: Mar 26, 2016
    danshawen likes this.
  16. rpenner Fully Wired Valued Senior Member

    Messages:
    4,833
    Some special cases I worked out long-hand for another thread:


    \(\vec{\zeta} \to A(\vec{\zeta}) = \begin{pmatrix}0 & \zeta_x & \zeta_y & \zeta_z \\ \zeta_x & 0 & 0 & 0 \\ \zeta_y & 0 & 0 & 0 \\ \zeta_z & 0 & 0 & 0 \end{pmatrix} \\ A(\vec{\zeta})^2 = \begin{pmatrix}\zeta^2 & 0 & 0 & 0 \\ 0 & \zeta_x^2 & \zeta_x \zeta_y & \zeta_x \zeta_z \\ 0 & \zeta_x \zeta_y & \zeta_y^2 & \zeta_y \zeta_z \\ 0 & \zeta_x \zeta_z & \zeta_y \zeta_z & \zeta_z^2 \end{pmatrix} \\ A(\vec{\zeta})^3 = \zeta^2 A(\vec{\zeta}) \\ A(\vec{\zeta})^4 = \zeta^2 A(\vec{\zeta})^2 \\ \Lambda(\vec{\zeta}) = e^{A(\vec{\zeta})} = I + \frac{ \sinh \sqrt{ \zeta^2 } }{ \sqrt{ \zeta^2 } } A(\vec{\zeta}) + \frac{ \cosh \sqrt{ \zeta^2 } - 1 }{ \zeta^2} A(\vec{\zeta})^2 \\ \Lambda(-\vec{\zeta}) = I - \frac{ \sinh \sqrt{ \zeta^2 } }{ \sqrt{ \zeta^2 } } A(\vec{\zeta}) + \frac{ \cosh \sqrt{ \zeta^2 } - 1 }{ \zeta^2} A(\vec{\zeta})^2 \\ \Lambda(\vec{\zeta}) \Lambda(-\vec{\zeta}) = \left( I + \frac{ \sinh \sqrt{ \zeta^2 } }{ \sqrt{ \zeta^2 } } A(\vec{\zeta}) + \frac{ \cosh \sqrt{ \zeta^2 } - 1 }{ \zeta^2} A(\vec{\zeta})^2 \right) \left( I - \frac{ \sinh \sqrt{ \zeta^2 } }{ \sqrt{ \zeta^2 } } A(\vec{\zeta}) + \frac{ \cosh \sqrt{ \zeta^2 } - 1 }{ \zeta^2} A(\vec{\zeta})^2 \right) \\ \quad \quad \quad = I + \frac{ 2 \cosh \sqrt{ \zeta^2 } - 2 - \sinh^2 \sqrt{ \zeta^2 } + \cosh^2 \sqrt{ \zeta^2 } - 2 \cosh \sqrt{ \zeta^2 } + 1}{ \zeta^2} A(\vec{\zeta})^2 \\ \quad \quad \quad = I \)

    \(\vec{\theta} \to B(\vec{\theta}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\theta_z & \theta_y \\ 0 & \theta_z & 0 & - \theta_x \\ 0 & -\theta_y & \theta_x & 0 \end{pmatrix} \\ B(\vec{\theta})^2 = \begin{pmatrix}0 & 0 & 0 & 0 \\ 0 & \theta_x^2 - \theta^2 & \theta_x \theta_y & \theta_x \theta_z \\ 0 & \theta_x \theta_y & \theta_y^2 - \theta^2 & \theta_y \theta_z \\ 0 & \theta_x \theta_z & \theta_y \theta_z & \theta_z^2 - \theta^2\end{pmatrix} \\ B(\vec{\theta})^3 = -\theta^2 B(\vec{\theta}) \\ B(\vec{\theta})^4 = -\theta^2 B(\vec{\theta})^2 \\ R(\vec{\theta}) = e^{B(\vec{\theta})} = I + \frac{ \sin \sqrt{ \theta^2 } }{ \sqrt{ \theta^2 } } B(\vec{\theta}) + \frac{ 1 - \cos \sqrt{ \theta^2 } }{ \theta^2} B(\vec{\theta})^2 \\ \quad \quad \quad = I + \frac{ \sinh \sqrt{ -\theta^2 } }{ \sqrt{ -\theta^2 } } B(\vec{\theta}) + \frac{ \cosh \sqrt{ -\theta^2 } - 1}{ -\theta^2} B(\vec{\theta})^2 \\ R(-\vec{\theta}) = I - \frac{ \sin \sqrt{ \theta^2 } }{ \sqrt{ \theta^2 } } B(\vec{\theta}) + \frac{ 1 - \cos \sqrt{ \theta^2 } }{ \theta^2} B(\vec{\theta})^2 \\ R(\vec{\theta}) R(-\vec{\theta}) = \left( I + \frac{ \sin \sqrt{ \theta^2 } }{ \sqrt{ \theta^2 } } B(\vec{\theta}) + \frac{ 1 - \cos \sqrt{ \theta^2 } }{ \theta^2} B(\vec{\theta})^2 \right) \left( I - \frac{ \sin \sqrt{ \theta^2 } }{ \sqrt{ \theta^2 } } B(\vec{\theta}) + \frac{ 1 - \cos \sqrt{ \theta^2 } }{ \theta^2} B(\vec{\theta})^2 \right) \\ \quad \quad \quad = I + \frac{ 2 - 2 \cos \sqrt{ \theta^2 } - \sin^2 \sqrt{ \theta^2 } - 1 + 2 \cos \sqrt{ \theta^2 } - \cos^2 \sqrt{ \theta^2 } }{ \theta^2} B(\vec{\theta})^2 \\ \quad \quad \quad = I \)
     
  17. rpenner Fully Wired Valued Senior Member

    Messages:
    4,833
    Define:
    \( \left[ \vec{u}_{\times} \right] \equiv \begin{pmatrix} 0 & - u_z & u_y \\ u_z & 0 & - u_x \\ - u_y & u_x & 0 \end{pmatrix} \\ \vec{u} \cdot \vec{v} \equiv \vec{u}^{\textrm{T}} \, \vec{v} = u_x v_x + u_y v_y + u_z v_z \\ u^2 \equiv \vec{u} \cdot \vec{u} \\ \vec{u} \otimes \vec{v} \equiv \vec{u} \, \vec{v}^{\textrm{T}} = \begin{pmatrix} u_x v_x & u_x v_y & u_x v_z \\ u_y v_x & u_y v_y & u_y v_z \\ u_z v_x & u_z v_y & u_z v_z \end{pmatrix} \\ A(\vec{u}) \equiv \begin{pmatrix} 0 & \vec{u}^{\textrm{T}} \\ \vec{u} & 0 \end{pmatrix} = \begin{pmatrix} 0 & u_x & u_y & u_z \\ u_x & 0 & 0 & 0 \\ u_y & 0 & 0 & 0 \\ u_z & 0 & 0 & 0 \end{pmatrix} \\ B(\vec{u}) \equiv \begin{pmatrix} 0 & \vec{0}^{\textrm{T}} \\ \vec{0} & \left[ \vec{u}_{\times} \right] \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -u_z & u_y \\ 0 & u_z & 0 & - u_x \\ 0 & -u_y & u_x & 0 \end{pmatrix} \\ M( \vec{\rho} , \vec{\theta}) \equiv A(\vec{\rho}) + B(\vec{\theta}) = \begin{pmatrix} 0 & \vec{\rho}^{\textrm{T}} \\ \vec{\rho} & \left[ \vec{\theta}_{\times} \right] \end{pmatrix} = \begin{pmatrix} 0 & \rho_x & \rho_y & \rho_z \\ \rho_x & 0 & -\theta_z & \theta_y \\ \rho_y & \theta_z & 0 & - \theta_x \\ \rho_z & -\theta_y & \theta_x & 0 \end{pmatrix} \)

    \( A(\vec{\rho})^2 = \begin{pmatrix} \rho^2 & \vec{0}^{\textrm{T}} \\ \vec{0} & \vec{\rho} \otimes \vec{\rho} \end{pmatrix} \\ A(\vec{\rho})^3 = \rho^2 A(\vec{\rho}) \\ e^{A(\vec{\rho})} = I_4 + \sum_{k=0}^{\infty} \frac{ 1 }{ (2k+1)! } A(\vec{\rho})^{2k+1} + \sum_{k=0}^{\infty} \frac{ 1 }{ (2k+2)! } A(\vec{\rho})^{2k+2} \\ \quad \quad \quad = I_4 + \sum_{k=0}^{\infty} \frac{ \rho^{2k} }{ (2k+1)! } A(\vec{\rho}) + \sum_{k=0}^{\infty} \frac{ \rho^{2k} }{ (2k+2)! } A(\vec{\rho})^{2} \\ \quad \quad \quad = I_4 + \frac{\sinh \rho}{\rho} A(\vec{\rho}) + \frac{\cosh \rho - 1}{\rho^2} A(\vec{\rho})^{2} \)

    \(B(\vec{\theta})^2 = \begin{pmatrix} 0 & \vec{0}^{\textrm{T}} \\ \vec{0} & \vec{\theta} \otimes \vec{\theta} - \theta^2 I_3 \end{pmatrix} \\ B(\vec{\theta})^3 = - \theta^2 B(\vec{\theta}) \\ e^{B(\vec{\theta})} = I_4 + \sum_{k=0}^{\infty} \frac{ 1 }{ (2k+1)! } B(\vec{\theta})^{2k+1} + \sum_{k=0}^{\infty} \frac{ 1 }{ (2k+2)! } B(\vec{\theta})^{2k+2} \\ \quad \quad \quad = I_4 + \sum_{k=0}^{\infty} \frac{ (-1)^k \theta^{2k} }{ (2k+1)! } B(\vec{\theta}) + \sum_{k=0}^{\infty} \frac{ (-1)^k \theta^{2k} }{ (2k+2)! } B(\vec{\theta})^{2} \\ \quad \quad \quad = I_4 + \frac{\sinh \sqrt{-\theta^2} }{ \sqrt{-\theta^2} } B(\vec{\theta}) + \frac{\cosh \sqrt{-\theta^2} - 1}{- \theta^2} B(\vec{\theta})^{2} \\ \quad \quad \quad = I_4 + \frac{\sin \theta}{\theta} B(\vec{\theta}) + \frac{1 - \cos \theta}{\theta^2} B(\vec{\theta})^{2} \)

    \( A(\vec{\rho}) A(\vec{\theta}) = \begin{pmatrix} \vec{\rho} \cdot \vec{\theta} & \vec{0} ^{\textrm{T}} \\ \vec{0} & \vec{\rho} \otimes \vec{\theta} \end{pmatrix} \\ A(\vec{\theta}) A(\vec{\rho}) = \left( A(\vec{\rho}) A(\vec{\theta}) \right)^{\textrm{T}} \\ B(\vec{\rho}) B(\vec{\theta}) = \begin{pmatrix} \vec{0} & \vec{0} ^{\textrm{T}} \\ \vec{0} & \vec{\theta} \otimes \vec{\rho} - ( \vec{\rho} \cdot \vec{\theta} ) I_3\end{pmatrix} \\ B(\vec{\theta}) B(\vec{\rho}) = \left( B(\vec{\rho}) B(\vec{\theta}) \right)^{\textrm{T}} \\ A(\vec{\rho}) B(\vec{\rho}) = B(\vec{\rho}) A(\vec{\rho}) = 0 \\ A(\vec{\rho}) B(\vec{\theta}) = \begin{pmatrix} 0 & -( \vec{\theta} \times \vec{\rho} ) ^{\textrm{T}} \\ \vec{0} & 0 \end{pmatrix} \\ A(\vec{\rho}) B(\vec{\theta}) + A(\vec{\theta}) B(\vec{\rho}) = A(\vec{\rho}) B(\vec{\theta}) + A(\vec{\rho})^{\textrm{T}} B(\vec{\theta}) ^{\textrm{T}} = 0 \\ \left( A(\vec{\rho}) + B(\vec{\theta}) \right)\left( A(\vec{\theta}) - B(\vec{\rho}) \right) \\ \quad \quad \quad = A(\vec{\rho})A(\vec{\theta}) + B(\vec{\theta})A(\vec{\theta}) - A(\vec{\rho})B(\vec{\rho}) - B(\vec{\theta})B(\vec{\rho}) \\ \quad \quad \quad = A(\vec{\rho})A(\vec{\theta}) - B(\vec{\theta})B(\vec{\rho}) \\ \quad \quad \quad = ( \vec{\rho} \cdot \vec{\theta} ) I_4 \)

    \( \textrm{det} \, M(\vec{\rho}, \vec{\theta}) = - ( \vec{\rho} \cdot \vec{\theta} )^2 \\ M(\vec{\rho}, \vec{\theta})^{-1} = ( \vec{\rho} \cdot \vec{\theta} )^{-1} M(\vec{\theta}, -\vec{\rho}) ; \quad \textrm{if} \; \vec{\rho} \cdot \vec{\theta} \neq 0 \\ M(\vec{\rho}, \vec{\theta})^2 = \begin{pmatrix} \rho^2 & -( \vec{\theta} \times \vec{\rho} ) ^{\textrm{T}} \\ \vec{\theta} \times \vec{\rho} & \vec{\rho} \otimes \vec{\rho} + \vec{\theta} \otimes \vec{\theta} - \theta^2 I_3 \end{pmatrix} \\ M(\vec{\rho}, \vec{\theta})^3 = ( \rho^2 - \theta^2 ) M + ( \vec{\rho} \cdot \vec{\theta} )^2 M^{-1} \\ M(\vec{\rho}, \vec{\theta})^4 = (\rho^2 - \theta^2 ) M^2 + ( \vec{\rho} \cdot \vec{\theta} )^2 I_4 \)

    So the general case is going to be complicated, but there are interesting special cases.
     
    Last edited: May 5, 2016
  18. rpenner Fully Wired Valued Senior Member

    Messages:
    4,833
    This seems like a nicer way to think about it, decomposing into factors based on the trace and the traceless part.
    \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ \textrm{exp}(M) = e^{\frac{a+d}{2}} \left( \cosh \sqrt{ \frac{(a-d)^2}{4} + bc} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{ \sinh \sqrt{ \frac{(a-d)^2}{4} + bc} }{ \sqrt{ \frac{(a-d)^2}{4} + bc} } \begin{pmatrix} \frac{a-d}{2} & b \\ c & \frac{d-a}{2} \end{pmatrix} \right)\)
     
    iceaura likes this.

Share This Page