Displaying equations using Tex

Discussion in 'Physics & Math' started by Pete, Dec 20, 2006.

  1. ash64449 Registered Senior Member

    Messages:
    795
    \(a^2\)
     
  2. Google AdSense Guest Advertisement



    to hide all adverts.
  3. ash64449 Registered Senior Member

    Messages:
    795
    \(\int{\frac{2x}{x^2}} = ln(x^2)\)
     
  4. Google AdSense Guest Advertisement



    to hide all adverts.
  5. ash64449 Registered Senior Member

    Messages:
    795
    \( {\frac{L_0v}{c^2}}\)

    Test complete!
     
  6. Google AdSense Guest Advertisement



    to hide all adverts.
  7. Futilitist This so called forum is a fraud... Registered Senior Member

    Messages:
    1,586
    \( ax^2 \)

    \(\int{\frac{2x}{x^2}} = ln(x^2)\)

    Um...

    It doesn't work.

    What's up with that?



    ---Futilitist

    Please Register or Log in to view the hidden image!

     
    Last edited: Sep 1, 2015
  8. origin Trump is the best argument against a democracy. Valued Senior Member

    Messages:
    9,506
    Looks like it works to me. Does it still not work to you?
     
  9. rpenner Fully Wired Staff Member

    Messages:
    4,833
    Futilitist is ignorant that it is a javascript action in the browser which happens after page load time that transformed the Latex input into typeset mathematics. One consequence of this is that you don't immediately see the effect after posting and editing, but must reload the page.


    \(5^{4^{3^{2^1}}} = 5^{4^9} = 5^{262144} = 6206069878 \underbrace{\dots \dots \dots \dots \dots \dots }_{183211 \, \textrm{extra digits}} 8212890625\)
     
    Last edited: Sep 1, 2015
  10. Futilitist This so called forum is a fraud... Registered Senior Member

    Messages:
    1,586
    Yeah, that's about what I figured. Unaware might have been a better term to use than ignorant, though. Just sayin'



    ---Futilitist

    Please Register or Log in to view the hidden image!

     
  11. Futilitist This so called forum is a fraud... Registered Senior Member

    Messages:
    1,586
    \(\frac{dS_{CV}}{dt} =\sum_j\frac{\dot{Q}_{j}}{T_{j}} +\sum_i\dot{m}_{i}s_{i} -\sum_e\dot{m}_{e}s_{e} +\dot{\sigma}_{cv}\)

    Where \(\frac{dS_{CV}}{dt}\) represents the time rate of change of entropy within the control volume.

    \(\frac{dS_{CV}}{dt}=\frac{\dot{Q}_{j}}{T_{j}}-{m}_{e}s_{e}+\sigma_{cv}\)

    \(\frac{BTU}{sec*°R}\)

    \(s_{2}-s_{1}=c*\ln{\frac{T_{2}}{T_{1}}}\)

    \(\frac{\dot{Q}_{j}}{T_{j}}=\dot{\sigma}_{cv}\)

    \(\dot{I_{cv}}=T_{O}*\dot\sigma_{cv}\)

    \(E_{TP}=\int_{t1}^{t2}\dot{I_{cv}}dt\)

    \(\frac{E_{TP/lb}}{Gb} =\begin{bmatrix}\frac{(m_{c}*c_{c} +m_{w}*c_{w})(T_{R}-T_{O})}{m_{c}} \end{bmatrix}/Gb\)
     
    Last edited: Sep 3, 2015
  12. John Connellan Valued Senior Member

    Messages:
    3,636
  13. QuarkHead Remedial Math Student Valued Senior Member

    Messages:
    1,484
    I have a problem. Using Firefox (my preferred browser) on this site, I cannot get LaTex images to render correctly. All is fine in Chrome (which I dislike) and all is fine using Firefox for other math-related sites I use.

    I have JavaScript enabled for Firefox, so what am I doing wrong?
     
  14. James R Just this guy, you know? Staff Member

    Messages:
    30,136
    No idea. I'm using Firefox too (on Windows 10), and everything seems fine.
     
  15. Schneibster Registered Member

    Messages:
    390
    \($R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}$\)

    On edit: Well, that's pretty different. When I first looked it appeared to be the bare latex code. Now it's displaying properly (except it shows the $ at the beginning and end- I'll remember that and leavve them out).

    On second edit: they went back to bare latex code when I edited. This is a pretty funky implementation, but that's OK, as long as I know its limitations. Kinda inconvenient not to be able to see your LaTeX in the preview however.
     
    Last edited: Apr 11, 2016
  16. Confused2 Registered Senior Member

    Messages:
    402
    So far I've tried Gummi and Texmaker and found that we are making assumptions about each other that do not result in a match. Texmaker looks almost click to select but the symbols I want aren't there. So far this is looking like another of those "It would be quicker to write it myself than learn how to use what these guys have produced." . Is there a Latex editor out there that is simple simple simple? Surely it can't take much rocket science to get a symbol from a selection and slap it onto some sort of display in real time.
     
  17. QuarkHead Remedial Math Student Valued Senior Member

    Messages:
    1,484
    TexMaker is by far the best cross-platform LaTex editor I know. The "click-to-select" options are inevitably limited, so you really should learn (link) AMS Latex codes - these are embedded in TexMaker provided you learn how to call them.
     
    Confused2 likes this.
  18. Schneibster Registered Member

    Messages:
    390
    This works pretty well for my purposes.
     
    Confused2 likes this.
  19. rpenner Fully Wired Staff Member

    Messages:
    4,833
    Test of using sympy as Latex Generator. Of course, this is a regression -- to avoid learning language X you learn language Y.

    \( v^{\mu} = \left[\begin{matrix}t\\r\\\theta\\\phi\end{matrix}\right] \)
    \( g_{\mu\nu} = \left[\begin{matrix}\left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} & 0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{03}}{\left (r,\theta \right )}\\0 & \left(-1\right)^{s_{m}} \operatorname{g_{11}}{\left (r,\theta \right )} & 0 & 0\\0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{22}}{\left (r,\theta \right )} & 0\\\left(-1\right)^{s_{m}} \operatorname{g_{03}}{\left (r,\theta \right )} & 0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{33}}{\left (r,\theta \right )}\end{matrix}\right] \)
    \( a^{\mu\nu} = \left[\begin{matrix}\left(-1\right)^{s_{m}} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} & 0 & 0 & - \left(-1\right)^{s_{m}} \operatorname{g_{03}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )}\\0 & \left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - \left(-1\right)^{s_{m}} \operatorname{g_{03}}^{2}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} & 0 & 0\\0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - \left(-1\right)^{s_{m}} \operatorname{g_{03}}^{2}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} & 0\\- \left(-1\right)^{s_{m}} \operatorname{g_{03}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} & 0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )}\end{matrix}\right] \)
    \( g = \left(\operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - \operatorname{g_{03}}^{2}{\left (r,\theta \right )}\right) \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} \)
    \( \Gamma_{ t \mu\nu} = \left[\begin{matrix}0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )} & 0\\\frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )} & 0 & 0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}\\\frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )} & 0 & 0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}\\0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} & 0\end{matrix}\right] \)
    \( \Gamma_{ r \mu\nu} = \left[\begin{matrix}- \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )} & 0 & 0 & - \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}\\0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{11}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{11}}{\left (r,\theta \right )} & 0\\0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{11}}{\left (r,\theta \right )} & - \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{22}}{\left (r,\theta \right )} & 0\\- \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} & 0 & 0 & - \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )}\end{matrix}\right] \)
    \( \Gamma_{ \theta \mu\nu} = \left[\begin{matrix}- \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )} & 0 & 0 & - \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}\\0 & - \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{11}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{22}}{\left (r,\theta \right )} & 0\\0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{22}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{22}}{\left (r,\theta \right )} & 0\\- \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} & 0 & 0 & - \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )}\end{matrix}\right] \)
    \( \Gamma_{ \phi \mu\nu} = \left[\begin{matrix}0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} & 0\\\frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} & 0 & 0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )}\\\frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} & 0 & 0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )}\\0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )} & 0\end{matrix}\right] \)

    Code:
    print '[tex]', 'v^{\\mu}', '=', latex(sympy.Matrix(solutions['General Radial']['v^0'].tolist())), '[/tex]'
    print '[tex]', 'g_{\\mu\\nu}', '=', latex(solutions['General Radial']['g_01'].tomatrix()), '[/tex]'
    print '[tex]', 'a^{\\mu\\nu}', '=', latex(solutions['General Radial']['a^01'].tomatrix()), '[/tex]'
    print '[tex]', 'g', '=', latex(solutions['General Radial']['g']), '[/tex]'
    for i in range(4):
        print '[tex]', '\\Gamma_{', latex(solutions['General Radial']['v^0'][i]), '\\mu\\nu}', '=', latex(solutions['General Radial']['Gamma_012'][i, :, :].tomatrix()), '[/tex]'
    
     
    Last edited: Apr 23, 2016
    Schneibster likes this.
  20. Dr_Toad It's green! Valued Senior Member

    Messages:
    1,779
    Code:
    a^{01} = \left[\begin{matrix}\left(-1\right)^{s_{m}} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} & 0 & 0 & - \left(-1\right)^{s_{m}} \operatorname{g_{03}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )}\\0 & \left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - \left(-1\right)^{s_{m}} \operatorname{g_{03}}^{2}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} & 0 & 0\\0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - \left(-1\right)^{s_{m}} \operatorname{g_{03}}^{2}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} & 0\\- \left(-1\right)^{s_{m}} \operatorname{g_{03}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} & 0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )}\end{matrix}\right]

    Amazing. My renderer does this with the Tex code shown by your plugin on right click, etc..:

    Please Register or Log in to view the hidden image!

     
    Last edited: Apr 23, 2016
    Schneibster likes this.
  21. rpenner Fully Wired Staff Member

    Messages:
    4,833
    And then one quickly runs into the 10K posting limit.
    Code:
    for i in range(4):
        print '[tex]', '\\Gamma^{', latex(solutions['General Radial']['v^0'][i]), '}_{\\mu\\nu}', '=', latex(simplify(solutions['General Radial']['Gamma^0_12'][i, :, :]).tomatrix()), '[/tex]'
    
    \( \Gamma^{ t }_{\mu\nu} = \left[\begin{matrix}0 & \frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & \frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0\\\frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0 & 0 & \frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}}\\\frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0 & 0 & \frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}}\\0 & \frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & \frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0\end{matrix}\right] \)
    \( \Gamma^{ r }_{\mu\nu} = \left[\begin{matrix}- \frac{\frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}} & 0 & 0 & - \frac{\frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}}\\0 & \frac{\frac{\partial}{\partial r} \operatorname{g_{11}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}} & \frac{\frac{\partial}{\partial \theta} \operatorname{g_{11}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}} & 0\\0 & \frac{\frac{\partial}{\partial \theta} \operatorname{g_{11}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}} & - \frac{\frac{\partial}{\partial r} \operatorname{g_{22}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}} & 0\\- \frac{\frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}} & 0 & 0 & - \frac{\frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}}\end{matrix}\right] \)
    \( \Gamma^{ \theta }_{\mu\nu} = \left[\begin{matrix}- \frac{\frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}} & 0 & 0 & - \frac{\frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}}\\0 & - \frac{\frac{\partial}{\partial \theta} \operatorname{g_{11}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}} & \frac{\frac{\partial}{\partial r} \operatorname{g_{22}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}} & 0\\0 & \frac{\frac{\partial}{\partial r} \operatorname{g_{22}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}} & \frac{\frac{\partial}{\partial \theta} \operatorname{g_{22}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}} & 0\\- \frac{\frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}} & 0 & 0 & - \frac{\frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}}\end{matrix}\right] \)
    \( \Gamma^{ \phi }_{\mu\nu} = \left[\begin{matrix}0 & \frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & \frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0\\\frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0 & 0 & \frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}}\\\frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0 & 0 & \frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}}\\0 & \frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & \frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0\end{matrix}\right] \)
     
    Dr_Toad and Schneibster like this.
  22. Schneibster Registered Member

    Messages:
    390
  23. Confused2 Registered Senior Member

    Messages:
    402
    Many thanks. I'll go with TexMaker - if it's good enough for you then it's good enough for me.
    All that java (or whatever) doesn't half slow down my system.
    By way of excuse/explanation for seeking a minimalist solution I have to maintain a vast database as a result of my trade. I have (for example) A[profoundly deaf,bladder problems,wears shorts] and B[profoundly disturbed,wears shorts] (they may or may not wear shorts for the same reason - I don't ask that sort of (or any) question). Anyway, clearly, it would not be good commercial practice to break the ice with B by shouting "HOW'S YOUR BLADDER?".
    rpenner, not for the first time -wow.
    -C2.
     

Share This Page