Mars' water:

Discussion in 'Astronomy, Exobiology, & Cosmology' started by paddoboy, Jan 21, 2020.

  1. paddoboy Valued Senior Member

    Messages:
    27,543
    https://phys.org/news/2020-01-mars-mineral-rich-salty.html

    Mars' water was mineral-rich and salty:

    Presently, Earth is the only known location where life exists in the Universe. This year the Nobel Prize in physics was awarded to three astronomers who proved, almost 20 years ago, that planets are common around stars beyond the solar system. Life comes in various forms, from cell-phone-toting organisms like humans to the ubiquitous micro-organisms that inhabit almost every square inch of the planet Earth, affecting almost everything that happens on it. It will likely be some time before it is possible to measure or detect life beyond the solar system, but the solar system offers a host of sites that might get a handle on how hard it is for life to start.

    Mars is at the top of this list for two reasons. First, it is relatively close to Earth compared to the moons of Saturn and Jupiter (which are also considered good candidates for discovering life beyond Earth in the solar system, and are targeted for exploration in the coming decade). Second, Mars is extremely observable because it lacks a thick atmosphere like Venus, and so far, there is pretty good evidence that Mars' surface temperature and pressure hovers around the point liquid water—considered essential for life—can exist. Further, there is good evidence in the form of observable river deltas, and more recent measurements made on Mars' surface, that liquid water did in fact flow on Mars billions of years ago.

    more at link...

    the paper:

    https://www.nature.com/articles/s41467-019-12871-6


    Semiarid climate and hyposaline lake on early Mars inferred from reconstructed water chemistry at Gale:

    Abstract
    Salinity, pH, and redox states are fundamental properties that characterize natural waters. These properties of surface waters on early Mars reflect palaeoenvironments, and thus provide clues on the palaeoclimate and habitability. Here we constrain these properties of pore water within lacustrine sediments of Gale Crater, Mars, using smectite interlayer compositions. Regardless of formation conditions of smectite, the pore water that last interacted with the sediments was of Na-Cl type with mild salinity (~0.1–0.5 mol/kg) and circumneutral pH. To interpret this, multiple scenarios for post-depositional alterations are considered. The estimated Na-Cl concentrations would reflect hyposaline, early lakes developed in 104–106-year-long semiarid climates. Assuming that post-depositional sulfate-rich fluids interacted with the sediments, the redox disequilibria in secondary minerals suggest infiltration of oxidizing fluids into reducing sediments. Assuming no interactions, the redox disequilibria could have been generated by interactions of upwelling groundwater with oxidized sediments in early post-depositional stages.

     

Share This Page