Using a couple of nuclear breeder reactors would produce enough energy to make quite alot of hydrogen.
http://www.clean-air.org/
The Ultimate Alternative
The best pollution-free alternative to batteries while still using clean electric motors is the hydrogen fuel cell. Hydrogen-powered "fuel cells hold enormous promise as a power source for a future generation of cars" (Zygmont 20). They do not have the restraints that batteries do, either.
Hydrogen is consumed by a pollution-free chemical reaction--not combustion--in a fuel cell. The fuel cell simply combines hydrogen and oxygen chemically to produce electricity, water, and waste heat (MacKenzie 62-3). Nothing else. And hydrogen is the most abundant element in the universe, constituting about 93% of all atoms. "It is found in water (H20), fossil fuels (basically, compounds of hydrogen and carbon), and all plants and animals" (61). "What better replacement for finite, nonrenewable gasoline?" (Zygmont 20). "Hydrogen has often been called the perfect fuel. Its major reserve on earth (water) is inexhaustible. The use of hydrogen is compatible with nature, rather than intrusive. We will never run out of hydrogen" (NHA).
Hydrogen can be obtained from water by the process of electrolysis, or splitting water molecules using electricity. We cannot, however, forget the external effects of getting the electricity from power plants. Many power plants across the country, producing electricity to charge batteries or to produce hydrogen, run on carbon-based fuels, such as coal, and therefore produce emissions (MacKenzie 61-2). Here in Spokane, however, where our electricity comes from the water-powered generators at Washington Water Power, this is not a problem, and hydrogen-fuel-cell-powered vehicles can be truly emission free.
The fuel cells are compatible with the cold winters we have in Spokane. There are several types of fuel cells, but the one most suited for cars is called the proton-exchange membrane (PEM) fuel cell. Some of its main features are its ability to start quickly and to run at moderate temperatures (150° instead of 1,900°, like some other versions), which will help because it does not need to heat up very much in order to run. The PEM fuel cell is compact and lightweight: a big advantage for cars. Furthermore, its maximum efficiency of 60% (energy delivered from hydrogen to motor as electricity) is about 3 times greater than the efficiency of internal combustion engines (most of the energy from combustion is lost in heat and friction before it even pushes down on the pistons) (Cannon 119, 112).
The range of fuel-cell-powered vehicles is not limited by batteries, but by the amount of fuel in the storage tank. Recent developments in hydrogen storage technology have come up with "carbon-adsorption" systems. These are refrigerated and pressurized tanks that can store massive amounts of hydrogen. Calculations estimate that over 7 gallons of hydrogen could be stored in a single gram of this new material. This allows a range of nearly 5,000 miles from a single tank! (Hill 20). These tanks would weigh less than 200 pounds, occupy about half the amount of space used by current gasoline tanks (H&FCL), and could be refueled in 4-5 minutes (MacKenzie 75). The carbon-adsorption tanks would also work well in Spokane's cold winters, as the process improves greatly as the temperature decreases. This tank could easily become the storage method of choice if research, improvements, and advancements continue (75). Even if nothing came from these or future developments, the current "range for hydrogen fuel cell vehicles is comparable to that for gasoline internal combustion engine vehicles" (Winkler).
from:
http://www.commutercars.com/h2