# Displaying equations using Tex

Discussion in 'Physics & Math' started by Pete, Dec 20, 2006.

1. ### ash64449Registered Senior Member

Messages:
795
$a^2$

3. ### ash64449Registered Senior Member

Messages:
795
$\int{\frac{2x}{x^2}} = ln(x^2)$

5. ### ash64449Registered Senior Member

Messages:
795
${\frac{L_0v}{c^2}}$

Test complete!

7. ### FutilitistThis so called forum is a fraud...Registered Senior Member

Messages:
1,586
$ax^2$

$\int{\frac{2x}{x^2}} = ln(x^2)$

Um...

It doesn't work.

What's up with that?

---Futilitist

Last edited: Sep 1, 2015
8. ### originHeading towards oblivionValued Senior Member

Messages:
11,889
Looks like it works to me. Does it still not work to you?

9. ### rpennerFully WiredValued Senior Member

Messages:
4,833
Futilitist is ignorant that it is a javascript action in the browser which happens after page load time that transformed the Latex input into typeset mathematics. One consequence of this is that you don't immediately see the effect after posting and editing, but must reload the page.

$5^{4^{3^{2^1}}} = 5^{4^9} = 5^{262144} = 6206069878 \underbrace{\dots \dots \dots \dots \dots \dots }_{183211 \, \textrm{extra digits}} 8212890625$

Last edited: Sep 1, 2015
10. ### FutilitistThis so called forum is a fraud...Registered Senior Member

Messages:
1,586
Yeah, that's about what I figured. Unaware might have been a better term to use than ignorant, though. Just sayin'

---Futilitist

11. ### FutilitistThis so called forum is a fraud...Registered Senior Member

Messages:
1,586
$\frac{dS_{CV}}{dt} =\sum_j\frac{\dot{Q}_{j}}{T_{j}} +\sum_i\dot{m}_{i}s_{i} -\sum_e\dot{m}_{e}s_{e} +\dot{\sigma}_{cv}$

Where $\frac{dS_{CV}}{dt}$ represents the time rate of change of entropy within the control volume.

$\frac{dS_{CV}}{dt}=\frac{\dot{Q}_{j}}{T_{j}}-{m}_{e}s_{e}+\sigma_{cv}$

$\frac{BTU}{sec*°R}$

$s_{2}-s_{1}=c*\ln{\frac{T_{2}}{T_{1}}}$

$\frac{\dot{Q}_{j}}{T_{j}}=\dot{\sigma}_{cv}$

$\dot{I_{cv}}=T_{O}*\dot\sigma_{cv}$

$E_{TP}=\int_{t1}^{t2}\dot{I_{cv}}dt$

$\frac{E_{TP/lb}}{Gb} =\begin{bmatrix}\frac{(m_{c}*c_{c} +m_{w}*c_{w})(T_{R}-T_{O})}{m_{c}} \end{bmatrix}/Gb$

Last edited: Sep 3, 2015
12. ### John ConnellanValued Senior Member

Messages:
3,636
$a_2$

13. ### QuarkHeadRemedial Math StudentValued Senior Member

Messages:
1,740
I have a problem. Using Firefox (my preferred browser) on this site, I cannot get LaTex images to render correctly. All is fine in Chrome (which I dislike) and all is fine using Firefox for other math-related sites I use.

I have JavaScript enabled for Firefox, so what am I doing wrong?

14. ### James RJust this guy, you know?Staff Member

Messages:
39,421
No idea. I'm using Firefox too (on Windows 10), and everything seems fine.

15. ### SchneibsterRegistered Member

Messages:
390
$R_{\mu \nu} - {1 \over 2}g_{\mu \nu}\,R + g_{\mu \nu} \Lambda = {8 \pi G \over c^4} T_{\mu \nu}$

On edit: Well, that's pretty different. When I first looked it appeared to be the bare latex code. Now it's displaying properly (except it shows the \$ at the beginning and end- I'll remember that and leavve them out).

On second edit: they went back to bare latex code when I edited. This is a pretty funky implementation, but that's OK, as long as I know its limitations. Kinda inconvenient not to be able to see your LaTeX in the preview however.

Last edited: Apr 11, 2016
16. ### Confused2Registered Senior Member

Messages:
609
So far I've tried Gummi and Texmaker and found that we are making assumptions about each other that do not result in a match. Texmaker looks almost click to select but the symbols I want aren't there. So far this is looking like another of those "It would be quicker to write it myself than learn how to use what these guys have produced." . Is there a Latex editor out there that is simple simple simple? Surely it can't take much rocket science to get a symbol from a selection and slap it onto some sort of display in real time.

17. ### QuarkHeadRemedial Math StudentValued Senior Member

Messages:
1,740
TexMaker is by far the best cross-platform LaTex editor I know. The "click-to-select" options are inevitably limited, so you really should learn (link) AMS Latex codes - these are embedded in TexMaker provided you learn how to call them.

Confused2 likes this.
18. ### SchneibsterRegistered Member

Messages:
390
This works pretty well for my purposes.

Confused2 likes this.
19. ### rpennerFully WiredValued Senior Member

Messages:
4,833
Test of using sympy as Latex Generator. Of course, this is a regression -- to avoid learning language X you learn language Y.

$v^{\mu} = \left[\begin{matrix}t\\r\\\theta\\\phi\end{matrix}\right]$
$g_{\mu\nu} = \left[\begin{matrix}\left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} & 0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{03}}{\left (r,\theta \right )}\\0 & \left(-1\right)^{s_{m}} \operatorname{g_{11}}{\left (r,\theta \right )} & 0 & 0\\0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{22}}{\left (r,\theta \right )} & 0\\\left(-1\right)^{s_{m}} \operatorname{g_{03}}{\left (r,\theta \right )} & 0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{33}}{\left (r,\theta \right )}\end{matrix}\right]$
$a^{\mu\nu} = \left[\begin{matrix}\left(-1\right)^{s_{m}} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} & 0 & 0 & - \left(-1\right)^{s_{m}} \operatorname{g_{03}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )}\\0 & \left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - \left(-1\right)^{s_{m}} \operatorname{g_{03}}^{2}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} & 0 & 0\\0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - \left(-1\right)^{s_{m}} \operatorname{g_{03}}^{2}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} & 0\\- \left(-1\right)^{s_{m}} \operatorname{g_{03}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} & 0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )}\end{matrix}\right]$
$g = \left(\operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - \operatorname{g_{03}}^{2}{\left (r,\theta \right )}\right) \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )}$
$\Gamma_{ t \mu\nu} = \left[\begin{matrix}0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )} & 0\\\frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )} & 0 & 0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}\\\frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )} & 0 & 0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}\\0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} & 0\end{matrix}\right]$
$\Gamma_{ r \mu\nu} = \left[\begin{matrix}- \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )} & 0 & 0 & - \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}\\0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{11}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{11}}{\left (r,\theta \right )} & 0\\0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{11}}{\left (r,\theta \right )} & - \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{22}}{\left (r,\theta \right )} & 0\\- \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} & 0 & 0 & - \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )}\end{matrix}\right]$
$\Gamma_{ \theta \mu\nu} = \left[\begin{matrix}- \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )} & 0 & 0 & - \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}\\0 & - \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{11}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{22}}{\left (r,\theta \right )} & 0\\0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{22}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{22}}{\left (r,\theta \right )} & 0\\- \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} & 0 & 0 & - \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )}\end{matrix}\right]$
$\Gamma_{ \phi \mu\nu} = \left[\begin{matrix}0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} & 0\\\frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} & 0 & 0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )}\\\frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} & 0 & 0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )}\\0 & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )} & \frac{\left(-1\right)^{s_{m}}}{2} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )} & 0\end{matrix}\right]$

Code:
print '$$', 'v^{\\mu}', '=', latex(sympy.Matrix(solutions['General Radial']['v^0'].tolist())), '$$'
print '$$', 'g_{\\mu\\nu}', '=', latex(solutions['General Radial']['g_01'].tomatrix()), '$$'
print '$$', 'a^{\\mu\\nu}', '=', latex(solutions['General Radial']['a^01'].tomatrix()), '$$'
print '$$', 'g', '=', latex(solutions['General Radial']['g']), '$$'
for i in range(4):
print '$$', '\\Gamma_{', latex(solutions['General Radial']['v^0'][i]), '\\mu\\nu}', '=', latex(solutions['General Radial']['Gamma_012'][i, :, :].tomatrix()), '$$'


Last edited: Apr 23, 2016
Schneibster likes this.
20. ### Dr_ToadIt's green!Valued Senior Member

Messages:
2,527
Code:
a^{01} = \left[\begin{matrix}\left(-1\right)^{s_{m}} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} & 0 & 0 & - \left(-1\right)^{s_{m}} \operatorname{g_{03}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )}\\0 & \left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - \left(-1\right)^{s_{m}} \operatorname{g_{03}}^{2}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} & 0 & 0\\0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - \left(-1\right)^{s_{m}} \operatorname{g_{03}}^{2}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} & 0\\- \left(-1\right)^{s_{m}} \operatorname{g_{03}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )} & 0 & 0 & \left(-1\right)^{s_{m}} \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{11}}{\left (r,\theta \right )} \operatorname{g_{22}}{\left (r,\theta \right )}\end{matrix}\right]

Amazing. My renderer does this with the Tex code shown by your plugin on right click, etc..:

Last edited: Apr 23, 2016
Schneibster likes this.
21. ### rpennerFully WiredValued Senior Member

Messages:
4,833
And then one quickly runs into the 10K posting limit.
Code:
for i in range(4):
print '$$', '\\Gamma^{', latex(solutions['General Radial']['v^0'][i]), '}_{\\mu\\nu}', '=', latex(simplify(solutions['General Radial']['Gamma^0_12'][i, :, :]).tomatrix()), '$$'

$\Gamma^{ t }_{\mu\nu} = \left[\begin{matrix}0 & \frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & \frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0\\\frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0 & 0 & \frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}}\\\frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0 & 0 & \frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}}\\0 & \frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & \frac{- \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )} + \operatorname{g_{33}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0\end{matrix}\right]$
$\Gamma^{ r }_{\mu\nu} = \left[\begin{matrix}- \frac{\frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}} & 0 & 0 & - \frac{\frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}}\\0 & \frac{\frac{\partial}{\partial r} \operatorname{g_{11}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}} & \frac{\frac{\partial}{\partial \theta} \operatorname{g_{11}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}} & 0\\0 & \frac{\frac{\partial}{\partial \theta} \operatorname{g_{11}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}} & - \frac{\frac{\partial}{\partial r} \operatorname{g_{22}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}} & 0\\- \frac{\frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}} & 0 & 0 & - \frac{\frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )}}{2 \operatorname{g_{11}}{\left (r,\theta \right )}}\end{matrix}\right]$
$\Gamma^{ \theta }_{\mu\nu} = \left[\begin{matrix}- \frac{\frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}} & 0 & 0 & - \frac{\frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}}\\0 & - \frac{\frac{\partial}{\partial \theta} \operatorname{g_{11}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}} & \frac{\frac{\partial}{\partial r} \operatorname{g_{22}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}} & 0\\0 & \frac{\frac{\partial}{\partial r} \operatorname{g_{22}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}} & \frac{\frac{\partial}{\partial \theta} \operatorname{g_{22}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}} & 0\\- \frac{\frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}} & 0 & 0 & - \frac{\frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )}}{2 \operatorname{g_{22}}{\left (r,\theta \right )}}\end{matrix}\right]$
$\Gamma^{ \phi }_{\mu\nu} = \left[\begin{matrix}0 & \frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & \frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0\\\frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0 & 0 & \frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}}\\\frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{00}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0 & 0 & \frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}}\\0 & \frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{33}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial r} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & \frac{\operatorname{g_{00}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{33}}{\left (r,\theta \right )} - \operatorname{g_{03}}{\left (r,\theta \right )} \frac{\partial}{\partial \theta} \operatorname{g_{03}}{\left (r,\theta \right )}}{2 \operatorname{g_{00}}{\left (r,\theta \right )} \operatorname{g_{33}}{\left (r,\theta \right )} - 2 \operatorname{g_{03}}^{2}{\left (r,\theta \right )}} & 0\end{matrix}\right]$

Messages:
390
23. ### Confused2Registered Senior Member

Messages:
609
Many thanks. I'll go with TexMaker - if it's good enough for you then it's good enough for me.
All that java (or whatever) doesn't half slow down my system.
By way of excuse/explanation for seeking a minimalist solution I have to maintain a vast database as a result of my trade. I have (for example) A[profoundly deaf,bladder problems,wears shorts] and B[profoundly disturbed,wears shorts] (they may or may not wear shorts for the same reason - I don't ask that sort of (or any) question). Anyway, clearly, it would not be good commercial practice to break the ice with B by shouting "HOW'S YOUR BLADDER?".
rpenner, not for the first time -wow.
-C2.