If this were true, you would be awarded the Nobel prize for reconciling relativity and quantum mechanics.
It is better, not to daydream but from my equations, this correlation can be observed.
If this were true, you would be awarded the Nobel prize for reconciling relativity and quantum mechanics.
Now explain your idea in words .
Mathematics can make anything true .
The electron has a mass, what's the radius? What about an electron in a hydrogen atom (i.e. bound to a proton)? Does it have a moment of inertia?hansda said:Say mass of the particle is m, its radius is r
And I'm saying, seriously, if you have managed to reconcile relativity and quantum mechanics, you have accomplished what the entire scientific community has been unable to accomplish in a half century.It is better, not to daydream but from my equations, this correlation can be observed.
The electron has a mass, what's the radius?
What about an electron in a hydrogen atom (i.e. bound to a proton)? Does it have a moment of inertia?
Or is the moment of inertia restricted to classical rigid objects with a known geometry? (I think so)
And I'm saying, seriously, if you have managed to reconcile relativity and quantum mechanics, you have accomplished what the entire scientific community has been unable to accomplish in a half century.
Sci-fo is peanuts. Take your work to a university. They will shower accolades upon you and introduce you to Hawking. Why are you wasting your time here?
In which case, every massive spinning particle should have a geometry.hansda said:Every massive, spinning particle should have a moment of Inertia.
Did you read that before posting?Electron do have a radius. https://en.wikipedia.org/wiki/Classical_electron_radius
In which case, every massive spinning particle should have a geometry.
But "should have" and "does have" aren't the same thing.
What experimental evidence is there for electron geometry?
Detail structure of an electron is not yet known. In my understanding, it must be hollow at the center, because spinning electron has a magnetic moment. Do you think, the Sun is static or spinning. Electrical field of electrons are spherical like the Sun.Here's a question: if the electron has a fixed radius but is also rotating, it must be that it has a fixed axis of rotation.
Then why is the electric field of an electron not rotating about a fixed axis, since if it were, a collection of lots of electrons, say in a metal plate, would not have a definite electric field perpendicular to the plate--the field lines would point in all directions and also rotate in space. Why isn't that observed? IOW, why does a charged plate have the field lines all aligned in the same direction if all the electrons are rotating about an axis?
P.S. I note the first link you have in the previous post is from alternativephysics.org, there the author repeats the mistake of equating $$ mc^2 $$ and $$ hf $$, with no explanation.
Another question: if the electron does have a radius and is like a small sphere, why does it also have a wavelength?
It is known.Detail structure of an electron is not yet known.
It is known.
They have no internal structure, no extra or hidden properties. They can't, or they would not behave as observed.
It is part of The Standard Model of Particle Physics. So, essentially, my source is the scientific community.These are your own views or you have a supporting source for your views.
Does the Standard Model say electron has zero radius?It is part of The Standard Model of Particle Physics. So, essentially, my source is the scientific community.
Don't you think - considering the prolificity of your ideas on physics - that's something you should already know? (There's a teachable moment here.)Does the Standard Model say electron has zero radius?
Don't you think - considering the prolificity of your ideas on physics - that's something you should already know? (There's a teachable moment here.)
One way to overcome that is to consider the mass of the electron as being "somewhere" in a wavepacket. Which is to say, electrons (their charge, mass and spin) have the same probability of being anywhere within a localised region Δx, which defines the boundaries of wavepackets.hansda said:Electron has a non zero mass. If it is having zero radius; that means it will have a zero volume. In that case, it would have been a case of singularity.
One way to overcome that is to consider the mass of the electron as being "somewhere" in a wavepacket. Which is to say, electrons (their charge, mass and spin) have the same probability of being anywhere within a localised region Δx, which defines the boundaries of wavepackets.
The boundaries depend on Heisenberg's uncertainty principle, of course (although that wasn't well understood at first).
Source please.It can be checked that radius of electron is more than radius of proton.