Maybe I'm drunk and not thinking straight, but if all light is always moving at the same speed of "c", how come photons have different levels of energy, frequency and speed?
The energy of a photon is proportional to its frequency and also the amount of energy inferred on any photon, depends on the observer and his/her frame of reference.Maybe I'm drunk and not thinking straight, but if all light is always moving at the same speed of "c", how come photons have different levels of energy, frequency and speed?
Ok, but if all photons move at the same speed, how can they have greater or lesser amounts of energy relative to each other? Shouldn't they all have the same amount of energy, or the more energetic ones move faster than the less energetic ones?The energy of a photon is proportional to its frequency and also the amount of energy inferred on any photon, depends on the observer and his/her frame of reference.
Ok, but if all photons move at the same speed, how can they have greater or lesser amounts of energy relative to each other? Shouldn't they all have the same amount of energy, or the more energetic ones move faster than the less energetic ones?
Thank you guys, that was very helpful. I was actually watching Cosmos and Neil deGrasse Tyson said that when light goes through a prism it slows down and splits into all wavelengths. I assumed he was correct, but I realize now that light can't be slowing down...
Ok, but if all photons move at the same speed, how can they have greater or lesser amounts of energy relative to each other? Shouldn't they all have the same amount of energy, or the more energetic ones move faster than the less energetic ones?
In actual fact when light enters any medium, it is said to "slow down" according to its refraction index. It is though absorbed and re emitted and has travelled a longer distance upon exiting that medium....hence it has a longer distance to travel.Thank you guys, that was very helpful. I was actually watching Cosmos and Neil deGrasse Tyson said that when light goes through a prism it slows down and splits into all wavelengths. I assumed he was correct, but I realize now that light can't be slowing down...
I think I get it... Seems to me like photons are like massless beams of pure energy that can move unchanged in the vacuum, and then when they interact with matter they lose part of their energy until being fully absorbed by an electron...
If the topic is broadened to include lossy interaction with the medium, I agree absorption and emission must be included. However, as the last part of that vid I linked to explains, pure refraction (including dispersion) is best thought of as a collective excitation involving atomic polarizations not atomic absorption/emission processes as discussed earlier in that vid. You have a quibble with that picture?But you are onto something interesting with the comment about absorption by an electron. The refractive index (the ratio of c to the net phase velocity in the medium, if I have it right) is a function of frequency. This is "dispersion", and is why red and blue light are bent to different degrees in a prism. The interesting thing is that this dependence of refractive index on frequency gets stronger and stronger as the frequency approaches one of the absorption frequencies of there material, i.e one of the "resonant" frequencies at which an electron in the material will absorb the photon. (Of course, at an absorption frequency itself, the material becomes opaque, because the light is no longer transmitted through the material. It is absorbed instead.)
So the phenomenon of dispersion is most definitely related to the process of absorption and emission. Both are due to the photons "coupling" with the electrons in the medium they are passing through, and at the absorption frequency, the coupling hits resonance and becomes powerful enough to cause absorption.
If the topic is broadened to include lossy interaction with the medium, I agree absorption and emission must be included. However, as the last part of that vid I linked to explains, pure refraction (including dispersion) is best thought of as a collective excitation involving atomic polarizations not atomic absorption/emission processes as discussed earlier in that vid. You have a quibble with that picture?
Well yes and no. As others have pointed out, they do not lose energy when travelling at a net lower speed in a material medium. Remember, for photons E= hν. ν, the frequency, is NOT changed on entering a material medium. Therefore the energy is not changed. You need to let go entirely of this idea that speed has something to do with energy, where photons is concerned. The interaction with the medium changes the effective, net, speed of phase and group velocity but does not affect energy.
But you are onto something interesting with the comment about absorption by an electron. The refractive index (the ratio of c to the net phase velocity in the medium, if I have it right) is a function of frequency. This is "dispersion", and is why red and blue light are bent to different degrees in a prism. The interesting thing is that this dependence of refractive index on frequency gets stronger and stronger as the frequency approaches one of the absorption frequencies of there material, i.e one of the "resonant" frequencies at which an electron in the material will absorb the photon. (Of course, at an absorption frequency itself, the material becomes opaque, because the light is no longer transmitted through the material. It is absorbed instead.)
So the phenomenon of dispersion is most definitely related to the process of absorption and emission. Both are due to the photons "coupling" with the electrons in the medium they are passing through, and at the absorption frequency, the coupling hits resonance and becomes powerful enough to cause absorption.
I think this is rather cool stuff, personally.
Very ok with that exchemist. You will have much greater in-depth knowledge of the various QFT intricacies, and there are probably other processes possible not even mentioned but then again not really germane to the OP.Not at all. Don't get me wrong, like you, I have little time for the "explanation" of lower effective speed in a medium as a rest of absorption and re-emission. Firstly absorption can't occur if the frequency doesn't correspond to an absorption line and secondly, if it did, the re-emitted light would be scattered in random directions, which it manifestly is not. (I have not watched the video so don't know whether this point is made - it certainly is one of the better videos on the topic that I have seen before).
No, what I'm suggesting (and of course these are all hand-waving, qualitative pictures, capable of expressing only a part of the QM model) is that absorption is a sort of limiting, "resonant", case of the more general polarisation interaction between light and matter. The behaviour of refractive index, as a function of frequency, as one scans the light frequency up to and through an absorption line makes the link between the two very obvious, it seems to me.
Are you OK with that or you do think I misrepresent it?
Very ok with that exchemist. You will have much greater in-depth knowledge of the various QFT intricacies, and there are probably other processes possible not even mentioned but then again not really germane to the OP.
And I made an error in saying QFT when just vanilla QED was more appropriate. Whatever - I think we have collectively converged to something useful for OP.Actually I know bugger-all about QFT. Whatever I know about this subject comes from the Quantum Chemistry supplementary option I took for my degree in the 1970s, a lot of it courtesy of Peter Atkins, whose inspirational lectures led me to buy his book, which I still have and occasionally dip into. In those days I could understand most of the maths. Now, it is only the concepts I really remember…...…..c'est la vie…...