All life on planet Earth relies on a process known as Carbon Fixation. This is the ability of plants, algae and various forms of bacteria to pump carbon dioxide from the environment, add solar or other energy and turn it into the sugars that are the required starting point needed for life processes.
Dr. Niv Antonovsky led the research in Professor Ron Milo’s lab at the Institute’s Plant and Environmental Sciences Department. He says that the ability to improve carbon fixation is crucial for our ability to cope with future challenges including the need to supply food to a growing population on shrinking land resources while using less fossil fuel.
Scientists inserted the metabolic pathway for carbon fixation and sugar production (the Calvin cycle) into the bacterium E. coli, which is a known consumer organism that east sugar and in turn, releases carbon dioxide. Milo and his group believed that with proper planning, they would be able to attach the genes containing the information for building it into the bacterium’s genome. The main enzyme used in plants to fix carbon, RuBisCO, utilizes as a substrate for the CO2 fixation reaction a metabolite which is toxic for the bacterial cells. This meant the design had to include precisely regulating the expression levels of the various genes across the multistep pathway.
In part, the team’s plan was a success. The bacteria did produce the carbon fixation enzymes, which were also functional. However, the machinery as a whole did not deliver what it was supposed to. Even though the carbon fixation machinery was expressed, the bacteria failed to use CO2 for sugar synthesis. It ended up relying on an external supply of sugar. Antonovsky says since the team was working with an organism that has evolved over millions of years to eat sugar, not CO2, they turned to evolution to help build the system they required.
http://sciencenewsjournal.com/scientists-engineer-bacteria-produce-sugar-carbon-dioxide/
Dr. Niv Antonovsky led the research in Professor Ron Milo’s lab at the Institute’s Plant and Environmental Sciences Department. He says that the ability to improve carbon fixation is crucial for our ability to cope with future challenges including the need to supply food to a growing population on shrinking land resources while using less fossil fuel.
Scientists inserted the metabolic pathway for carbon fixation and sugar production (the Calvin cycle) into the bacterium E. coli, which is a known consumer organism that east sugar and in turn, releases carbon dioxide. Milo and his group believed that with proper planning, they would be able to attach the genes containing the information for building it into the bacterium’s genome. The main enzyme used in plants to fix carbon, RuBisCO, utilizes as a substrate for the CO2 fixation reaction a metabolite which is toxic for the bacterial cells. This meant the design had to include precisely regulating the expression levels of the various genes across the multistep pathway.
In part, the team’s plan was a success. The bacteria did produce the carbon fixation enzymes, which were also functional. However, the machinery as a whole did not deliver what it was supposed to. Even though the carbon fixation machinery was expressed, the bacteria failed to use CO2 for sugar synthesis. It ended up relying on an external supply of sugar. Antonovsky says since the team was working with an organism that has evolved over millions of years to eat sugar, not CO2, they turned to evolution to help build the system they required.
http://sciencenewsjournal.com/scientists-engineer-bacteria-produce-sugar-carbon-dioxide/