DaleSpam said:
If you want to distinguish your theory from Newtonian gravity I think you are going to have to talk about very large densities where a significant fraction of the UniKEF flux is attenuated. Non-constant (but small) densities will probably yield the same results for UniKEF and Newton, IMO. I personally think that a validation of UniKEF would require a demonstration that for very dense objects inertial mass is not equal to gravitational mass and that this difference is consistent with the UniKEF model. Otherwise I expect it to behave exactly as an explanation for Newtonian gravity.
I think MacM wishes to distinguish uniKEF from Newtonian gravity mainly at large scales and only with a very slight difference when three objects align (the eclipse effect), but I will say no more on this as MacM can speak for himself.
You and Aer have preformed a valuable service for MacM’s uniKEF, but “validation” would require considerably more than either the results now shown mathematically or it surviving exploration of high-density effects as you are suggesting above.
What has been now been shown is that in the limit of the flux intensity going to infinity or the absorption probability going to zero, that in a uniform density body, probably of any shape, that the Newton model of the self gravitation and uniKEF model of the self gravitation are identical in the forces they produce. If absorption removed appreciable flux, then we made the invalid assumption that the force on interior point Xo by a particular flux ray was proportional to the distance difference between the point Xo and the two surface intercepts of the ray passing thru Xo with the surface.
No matter how dense you assume an object is, MacM can always postulate that the flux is so intense and the absorption probability is so low that this is the reasonable assumption to make. Namely, that the flux strength along the line between the surface and Xo is “essentially constant” even though some must be absorbed while traveling to the point Xo.
I agree with MacM that uniKEF has survived an important, rigorous test. My experience with Taylor instabilities led me to wrongly think that push gravity contained spheres (stars etc) would be unstable. The thing about Taylor instabilities I was neglecting is that they only occur with a discontinuity in the force fields, like high-pressure explosion gas pushing on the surface of a lead sphere to compress it and related tests when the A-bomb was being developed. Etc. UniKEF has no such interface between two different pressure regions. That is why it survived the Taylor instability.
I think that there is a “calibration constant” in the uniKEF model, which will always permit it to get the surface gravity, correct, for example on the sun. In addition, probably it will then predict correctly the gravitational force throughout the sun correctly (I expect this even if the radial density variation of the sun were included.) That is, if the two lengths to the point Xo were “effect lengths” constructed by integrating {ρ dl} along the physical lengths.
I continue to think uniKEF is non-sense because there is no single functional dependency upon density, which will account for two different stages in the life of a star (and many other reasons). For example, the flux intercepted while burning Hydrogen is proportional to R^2, the radius of the hydrogen fusion star, but later, when that star has exhausted its Hydrogen and contracted to get much hotter to fuse Helium its radius is only r and the flux intercepted is down by a factor of (r/R)^2 and the pressure trying to make it expand is enormously greater. How can less flux now contain the higher-pressure Helium burning star? The increased density factor alone, even if it were not much hotter, is up (R/r)^3 so flux significantly less than the flux which was in equilibrium with the low pressure hydrogen star can not possibly be in equilibrium with the much higher pressure of the helium burning star.
This test of uniKEF should be easier than the one just completed, as only spheres are required. It only takes one failure to prove a theory wrong, and there are many hurtles still for uniKEF to clear before it can be taken as a serious alternative to Newtonian theory.